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Statistical Properties of the 2D Attached Rouse Chain
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We study various dynamical properties (winding angles, areas) of a set of har-
monically bound Brownian particles (monomers), one endpoint of this chain
being kept fixed at the origin 0. In particular, we show that, for long times t,
the areas [Ai ] enclosed by the monomers scale like t1�2, with correlated
gaussian distributions. This has to be compared to the winding angles [%i ]
around fixed points that scale like t and are distributed according to indepen-
dent Cauchy laws.

KEY WORDS: Brownian motion; Rouse chain; path integrals; perturbation
theory.

In this paper, we will study the planar motion of a chain of n harmonically
bound Brownian particles. This model is usually referred to in the literature
as the Rouse chain(1) and has shown to be historically very important in
polymer science.(2, 3)

Physically, such a model can describe the motion of a polymer adsorbed
on a solid substrate, the Brownian dynamics resulting from thermal activa-
tion induced by lattice vibrations.(4)

On another hand, a planar random walk can be considered as the
projection of a 3D directed polymer. For instance, in ref. 5, windings of
such polymers around a rod have been related to localization properties.
Following this approach, a given trajectory of the Rouse chain will corre-
spond to a conformation of n quasi-aligned interacting polymers; so, the
chain dynamics will give access to static properties of such polymers.
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In the sequel, we will consider such a chain attached at the origin 0
and examine some of its winding properties. Describing a given configura-
tion of the chain by a complex n-vector z (the components zi , i=1,..., n, are
the complex coordinates of the particles), we consider the set of all the
closed trajectories of length t, i.e., z(t)=z(0), and this for all the starting
configurations z(0). Practically, we will not weight the starting configura-
tions with any thermodynamical factor. We are aware that this approach
is quite different from the one taken in polymer physics(6) where, at t=0,
the chain is supposed to be in equilibrium with the environment at some
finite temperature T.

Aj and %j being the area enclosed by the j th particle's trajectory and
its winding angle around 0, our goal is to compute the joint probability
distributions P([Ai ]) and P([%i ]) in the limit t � �, n being kept fixed.
In order to make comparisons, we now recall some of the results concerning
the planar Brownian motion.

We first quote the area and winding angle distributions, respectively
P(A) (Le� vy's law(7)) and P(%) (Spitzer's law(8)) for a particle allowed to
wander everywhere in the plane:

P(A)=
?
2t

1
cosh2 ?A�t

(1)

P(%)=
2

? ln t
1

1+(2%� ln t)2 (2)

(the last one holds, in the limit t � �, for open curves, the final point
being left unspecified).

Those two laws were obtained more than 40 years ago and since that
time many refinements have been brought. For instance, in ref. 9, the
authors pointed out the importance of the small windings occuring when
the particle is close to 0. Excluding an arbitrary small zone around 0, they
showed that the variance (%2) becomes finite in contrast with the Spitzer's
result, Eq. (2).

On the other hand, for Brownian motion on bounded domains, (10, 11)

the scaling variables in the limit t � �, become, resp., A�- t and %�t with
still an infinite variance (%2). We close here this brief recall and start our
chain study with the following set of coupled Langevin equations:

z* 1=k(z2&2z1)+'1

z* l =k(zl+1+zl&1&2zl)+' l , 2�l�n&1 (3)

z* n=k(zn&1&zn)+'n
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where k is the spring constant and 'm (#'mx+i'my) a gaussian white
noise:

('m(t)) =0

('m(t) 'm$(t$)) =2$mm$ $(t&t$) (4)

Introducing the complex n-vector ', Eq. (3) can be written in a matrix
form:

z* =&kMz+' (5)

where M is the tridiagonal (n_n) matrix:

2 &1 0 } } } 0

&1 2 &1 } } } 0

M=\ 0 &1 2 } } } 0+b b b . . . b
0 0 0 } } } 1

with an inverse given by:

1 1 1 } } } 1

1 2 2 } } } 2

M&1=\1 2 3 } } } 3+b b b . . . b
1 2 3 } } } n

The eigenvalues of M are:

|j=2 \1&cos
?(2j&1)

2n+1 + , 1� j�n (6)

With the matrix |=diag(|i ), we can write:

|=R&1MR (7)

z=RZ (8)

(R is an orthogonal matrix; the components of Z are the normal coor-
dinates).
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Let us call P(z, z0 , t) the probability for the chain to go from z0 at
t=0 to z at time t. P satisfies a Fokker�Planck equation:(12)

�t P=( t�zkMz+ t�z� kMz� +2t�z� �z) P (9)

where �z (resp. �z� ) is a n-vector of components �zi
(resp. �z� i

) and t�z (resp. t�z� )
is the transpose of �z (resp. �z� ). The solution can be written in terms of a
path integral (Dz Dz� =>n

i=1 Dzi Dz� i ):

P(z, z0 , t)=det(etkM) |
z(t)=z

z(0)=z0

Dz Dz� exp \&1
2 |

t

0

t(z�4 +kMz� )(z* +kMz) d{+
#F(z, z0 , t) .G(z, z0 , t) (10)

with

F(z, z0 , t)=det(etkM) e&1�2(tz� kMz&tz� 0kMz0)

G(z, z0 , t)=|
z(t)=z

z(0)=z0

Dz Dz� exp \&
1
2 |

t

0
( tz�4 z* +k2tz� M2z) d{+

=(z| e&tH0 |z0) (11)

=det \ S
2?+ exp \&

1
2

( tz� Cz+ tz� 0 Cz0& tz� Sz0& tz� 0 Sz)+ (12)

H0= &2t�z� �z+
1
2

k2tz� M2z (13)

The matrices S and C appearing in (12) are defined as:

S=kM(sinh(tkM))&1, C=kM coth (tkM) (14)

Actually, P, Eq. (10), can be easily deduced from the gaussian dis-
tribution of ' (use (5); det(etkM) is simply the functional Jacobian for the
change of variable ' � z(13)).

(12) is a generalization of the harmonic oscillator propagator.(14) It is
obtained by using the normal coordinates. Furthermore, as can be easily
checked, P is properly normalized: � dz dz� P(z, z0 , t)=1.

Remark that an effective measure can be built for a distinguished
monomer of the chain:(6) this can be done by integrating the Wiener
measure (10) over all the paths of the other monomers. The result is a com-
plicated expression that contains, in particular, a non local part (in time)
exhibiting the non-Markovian character of the process for this monomer.
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Nevertheless, we will show, in the sequel, that, despite this complication,
we can compute some joint laws for several monomers (and a fortiori for
one monomer).

So, let us turn to the computation of the area distribution P([Ai ]) for
closed trajectories. Inserting the constraints

`
n

j=1

$ \Aj&
1
4i |

t

0
(zjz�4 j&z� jz* j ) d{+ (15)

in the Wiener measure and using $(x)=(1�2?) � eiBx dB, we get the
lagrangian for n particles subjected to uniform magnetic fields orthogonal
to the motion plane (in addition to the harmonic interactions). Remark
that, in principle, the magnetic fields are not the same for all the particles.

Introducing the (n_n) diagonal matrix B (Bij=Bi $ij ), we obtain

P([Ai ])=| \`
n

j=1

dB j

2?
eiBj Aj+\ZB (t)

Z0(t)+ (16)

ZB (t)=Tr e&tHB

HB =H0+V

V=
1
2

(&tzB�z+ tz� B�z� )+
1
8

tz� B2z (17)

In general, the matrices B and M do not commute and it is a difficult
task to get the partition function ZB (t). On the other hand, the distribution
of the total area A=�n

i=1 Ai is obtained by taking Bj=B for all j. In this
case, B and M commute. Using normal coordinates and known results
about the partition function of the ``2D harmonic oscillator+uniform
magnetic field'' problem, (15) we get the characteristic function of A (In is
the (n_n) unit matrix):

ZB (t)
Z0(t)

= `
n

j=1
\ cosh(tk| j )&1

cosh(t - (k|j )
2+(B�2)2)&cosh(t(B�2))+ (18)

=
det(cosh(tkM)&In )

det(cosh(t - (kM)2+(B�2)2)&cosh(t(B�2)))
(19)

(the |j 's are defined in (6)).
Each factor of (18) can be Fourier transformed in terms of modified

Bessel functions and, finally, P(A) is obtained by convolution. However,
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the result is not illuminating and we prefer to stick to the limit t � �.
A detailed study of (18) leads to:

ZB (t)
Z0(t)

texp \&
tB2

8k
:
n

i=1

1
|i+=exp \&

tB2n(n+1)
16k + (20)

Then, Fourier transformation shows that, in the large t limit, A is
gaussian and scales like - t . Such a scaling is expected for all the areas Ai .
This is what we will demonstrate by perturbation theory. When t � �, we
have

ZB (t)te&tE0(B) (21)

where E0(B) is the ground state energy. Moreover, due to the large oscilla-
tions of the factor eiBjAj in (16) when Aj � �, only small values of Bj will
contribute. So, it is enough to compute E0(B) at lowest order in B. We will
use the normal coordinates Zi .

The eigenstates of H0 are given by(16)

9[mj ], [nj ]
([Zj ])= `

n

j=1
\� | jnj !

?(nj+|mj | )!
eimj %j (|j |Zj |

2) |mj |�2

_L |mj |
nj

(|j |Zj |
2) e&1�2 |j |Zj |2+ (22)

E[mj ], [nj ]
= :

n

j=1

(2nj+|m j |+1) |j (23)

where L |mj |
nj

is a Laguerre polynomial and the ground state is 9[0], [0] . The
perturbation V, (17), writes:

V= 1
2 (&tZR&1BR�Z+ tZ� R&1BR�Z� )+ 1

8
tZ� R&1B2RZ (24)

At first order in V, we get:

2E (1)
0 (B)=| 9*[0], [0]V9[0], [0]=

1
8k

Tr(B2M&1)=
1

8k
:
n

m=1

mB2
m (25)

Quadratic terms in B will also be produced at second order in V. The
non-vanishing contributions will come out from the transitions from the
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ground-state to the states [mj=\1, ml=�1, mi=0 if i{ j, l ], [nk=0].
The computation gives:

2E (2)
0 (B)=&

1
16k

:
n

m, m$=1

BmBm$ :
j{l

RmlRmj Rm$lRm$j \(| l�|j)+(|j �|l)
|l+| j +

(26)

=&
1

8k
:
n

m=1

mB2
m+

1
2k

:n

m, m$=1

BmDm, m$Bm$ (27)

with:

Dm, m$=
1
4 |

�

0
[(e&{M)m, m$]

2 d{+
1
8

:
n

l=1

R2
ml R

2
m$l

| l
(28)

So, to lowest order in B, we get:

ZB (t)
Z0(t)

texp \&
t

2k
:
n

m, m$=1

BmDm, m$Bm$+ (29)

As can be easily checked, (20) is recovered if we set Bm=B, \m.
With (16), we arrive at the probability distribution:

P([Ai ])=\ k
2?t+

n�2 1

- det D
exp \&

k
2t

:
n

m, m$=1

Am(D&1)m, m$ Am$+ (30)

Thus, we observe that the areas Ai are correlated gaussian variables
and that they scale like t1�2 as expected. For the special case n=2, we have:

P(A1 , A2)=�5
3

2k
?t

exp \&
2k
9t

(23A2
1&14A1A2+8A2

2)+ (31)

The width of A2 is larger than the one of A1 : this is related to the fact that
the second particle is, in average, farther from 0 than the first one. So, it
sweeps larger areas.

Now, going to the winding angles [%i ] around 0, we proceed as before
and insert the constraint

`
n

j=1

$ \%j&
1
2i |

t

0 \
zjz�4 j&z� jz* j

zj z� j + d{+ (32)
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in the Wiener measure. We are now faced to the problem of n harmonically
bound particles submitted to the magnetic fields of point-like vortices
located at the origin. The corresponding hamiltonian is:

H*=H0+W (33)

W= :
n

i=1

*i \ 1
zi

�z� i
&

1
z� i

�zi++ :
n

i=1

*2
i

2ziz� i
(34)

and the distribution P([%i ]) is given by:

P([%i ])=| \ `
n

j=1

d* j

2?
ei*j %j+\Z*(t)

Z0(t)+ (35)

Studying the limit t � �, we cannot develop directly as before a per-
turbation theory with W: this is because of the last term in W that leads
to a singular perturbation.(11) Due to this term, all the eigenfunctions of H*

must vanish in 0 at least as >n
i=1 (ziz� i ) |*i |�2 (#U ). So we redefine those

eigenfunctions:(11)

9=U9� (36)

The new hamiltonian acting on 9� is:

H� =H0+W� (37)

W� = :
n

i=1
\(*i&|*i | )

1
zi

�z� i
&(* i+|* i | )

1
z� i

�zi+ (38)

That time, we can compute 2E0(*) perturbatively and it will appear
that only first order is necessary. Integrals of the form

| e&1�2 tz� kMz 1
z� i

�zi
e&1�2 tz� kMz dz dz� (39)

are involved. Integrating by parts and using �zi
(1�z� i )=?$(zi ), we get, after

some algebra:

2E0(*)=k :
n

j=1

|*j |
(M&1) j j

=k :
n

j=1

|*j |
j

# :
n

j=1

+ j |*j | (40)
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So, for the winding angle distribution, we obtain:

P([%i ])=| \ `
n

j=1

d*j

2?
ei*j %j+ e&t � n

j=1 +j |*j | (41)

= `
n

j=1
\ 1

?+j t
1

1+(%j �+j t)2+ (42)

At large times, the winding angles are uncorrelated, they scale like t
and are distributed according to Cauchy laws. The variance (%2

j ) is
infinite: this is, of course, due to the ``small windings'' occuring in the
vicinity of the origin as will be seen explicitly at the end of this paper.

Moreover, we observe that %j scales like +j , i.e., like 1�j. This is
reasonable because, when j increases, the considered particle is, in average,
farther from 0 and, consequently, its winding angle must decrease. What is
somewhat unexpected is such a simple dependence of %j on j.

We also addressed the problem of winding angles around n different
points of complex coordinates bl , l=1,..., n.

%$j being the angle wound by the particle j around the point bj , we
obtained for the set of variables [%$j ] the same joint law as (42) except for
the change of + j into +$j :

+$j=+j e&+j |bj |
2

(43)

Owing to the rotationnal symmetry breaking when bj{0, the winding
angles %$j are statistically reduced by the factor e&+j |bj |2. Nevertheless, even
for large |bj |'s, the variance ( (%$j )

2) is infinite.
Setting all the bj 's to zero, we recover (42). This is what we will con-

sider now and assume that we count the winding angles % j only when
|zj |>r0 (i.e., the so-called ``big windings''(9)). Still when t � �, the pertur-
bation W, Eq. (34), can now be used because *j=0 when |zj |<r0 . At first
order in W, the linear contributions in *j will cancel. In the limit of a small,
but finite r0 , we get, for the remaining contribution:

2E (1)
0 (*)tk |ln r0 | :

n

j=1

*2
j

j
(44)

The quadratic contributions in the *j 's coming out from the second
order in W will be finite (thus subleading) when r0 � 0+. Finally, we get
for the big winding angles asymptotic distribution:

P([%j ])= `
n

j=1
� j

4?tk |ln r0 |
exp \&

j
4tk |ln r0 |

%2
j + (45)
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In this limit, the variables %j are uncorrelated (the correlations get
smaller and smaller when r0 decreases). They are now gaussian and scale
like - t |ln r0 |�j. Their variance grows to infinity when r0 goes to 0,
showing the increasing contribution of the small windings around 0.

To summarize, we have computed explicitly the asymptotic joint laws
for the areas (that scale like - t) and for the winding angles (that scale like
t when no critical region is excluded). The scaling variables we have got
compare well with those involved in the Brownian motion on finite
domains: this is not so surprising since the chain is bound to a fixed point.

Moreover, we have shown that physical interactions between particles
(harmonic interactions here) can lead to statistical correlations (case of the
areas) or not (case of the winding angles): it depends on the quantity we
consider.

In a forthcoming paper, (17) we will study the statistical properties of
the free Rouse chain. We will especially show that the areas and winding
angles distributions are very different from those presented in this work.
This is essentially due to the translation invariance that holds when the
chain is free.

One of us (O.B.) acknowledges Dr. G. Oshanin for drawing his attention
to this problem.
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